viernes, 15 de junio de 2012

5.1 Inferencia estadística: Concepto, Estimación, Prueba de hipótesis.


La Inferencia Estadística es la parte de la estadística matemática que se encarga del estudio de los métodos para la obtención del modelo de probabilidad (forma funcional y parámetros que determinan la función de distribución) que sigue una variable aleatoria de una determinada población, a través de una muestra (parte de la población) obtenida de la misma.

Los dos problemas fundamentales que estudia la inferencia estadística son el "Problema de la estimación" y el "Problema del contraste de hipótesis"

Cuando se conoce la forma funcional de la función de distribución que sigue la variable aleatoria objeto de estudio y sólo tenemos que estimar los parametros que la determinan, estamos en un problema de inferencia estadística paramétrica ; por el contrario cuando no se conoce la forma funcional de la distribución que sigue la variable aleatoria objeto de estudio, estamos ante un problema de inferencia estadística no paramétrica.

En lo que sigue nos vamos a limitar a problemas de inferencia estadística paramétrica, donde la variable aleatoria objeto de estudio sigue una distribución normal, y sólo tendremos que tratar de estimar los parámetros que la determinan, la media y la desviación típica.

Esta situación se presenta con frecuencia debido a que es posible a menudo conocer la forma funcional de la distribución de probabilidad, por consideraciones teóricas, quedando únicamente indeterminados los parámetros que determinan la función de distribución.

Como las poblaciones en las que se pretende estudiar una determinada variable aleatoria, son grandes, es muy caro o imposible, estudiar a todos sus individuos; lo que se hace, es estudiar una muestra ( una parte) de la población

En todos estos problemas que estudia la inferencia estadística juega un papel fundamental la "Teoría de la Probabilidad" (distintas formas funcionales de las distribuciones de probabilidad) y la "Teoría de Muestras" (procedimientos para tomar muestras de manera apropiada).

ESTIMACIÓN.
El material sobre teoría de la probabilidad constituye la base de la inferencia estadística, rama de la estadística que tiene que ver con el uso de los conceptos de la probabilidad para tratar con la toma de decisiones en condiciones de incertidumbre. La inferencia estadística está basada en la estimación y en la prueba de hipótesis.
Tipos de estimación.
Podemos hacer dos tipos de estimaciones concernientes a una población:
  • Una estimación puntual: es sólo u número que se utiliza para estimar un parámetro de población desconocido. Una estimación puntual a menudo resulta insuficiente, debido a que sólo tiene dos opciones: es correcta o está equivocada. Una estimación puntual es mucho más útil si viene acompañada por una estimación del error que podría estar implicado.
  • Una estimación de intervalo: es un intervalo de valores que se utiliza para estimar un parámetro de población. Esta estimación indica el error de dos maneras: por la extensión del intervalo y por la probabilidad de obtener el verdadero parámetro de la población que se encuentra dentro del intervalo.
Estimador y estimaciones.
Un estimador es una estadística de muestra utilizada para estimar un parámetro de población. La media de la muestra puede ser un estimador de la media de la población, y la porción de la muestra se puede utilizar como estimador de la porción de la población. También podemos utilizar el alcance de la muestra como un estimador del alcance de la población.
Cuando hemos observado un valor numérico específico de nuestro estimador, nos referimos a ese valor como una estimación. Una estimación es un valor específico observado de una estadística. Hacemos una estimación si tomamos una muestra y calculamos el valor que toma nuestro estimador en esa muestra.
PRUEBAS DE HIPÓTESIS.
Una hipótesis es una afirmación acerca de algo. En estadística, puede ser una suposición acerca del valor de un parámetro desconocido.
Pasos en la prueba de hipótesis:
  1. Definir la hipótesis nula: suponer una hipótesis acerca de una población.
  2. Formular una hipótesis alternativa: es una contra-hipótesis.
  3. Definir un criterio de decisión para rechazar o no la hipótesis nula.
  4. Recabar datos de la muestra.
  5. Calcular una estadística de muestra.
  6. Utilizar la estadística de muestra para evaluar la hipótesis.
Generalmente, se habla de "no rechazar" una hipótesis en lugar de "aceptar", ya que las pruebas no son concluyentes.
Introducción.
La prueba de hipótesis comienza con una suposición, llamada hipótesis, que hacemos con respecto a un parámetro de población. Después recolectamos datos de muestra, producimos estadísticas de muestra y usamos esta información para decidir qué tan probable es que sea correcto nuestro parámetro de población acerca del cual hicimos la hipótesis.
Debemos establecer el valor supuesto o hipotetizado del parámetro de población antes de comenzar a tomar la muestra. La suposición que deseamos probar se conoce como hipótesis nula, y se simboliza H0.
Siempre que rechazamos la hipótesis, la conclusión que sí aceptamos se llama hipótesis alternativa y se simboliza H1.
Interpretación del nivel de significancia.
El propósito de la prueba de hipótesis no es cuestionar el valor calculado de la estadística de muestra, sino hacer un juicio respecto a la diferencia entre esa estadística de muestra y un parámetro de población hipotetizado. El siguiente paso después de establecer la hipótesis nula alternativa consiste en decidir qué criterio utilizar para decidir si aceptar o rechazar la hipótesis nula.
Si suponemos que la hipótesis es correcta, entonces el nivel de significancia indicará el porcentaje de medias de muestra que está fuera de ciertos límites.
Siempre que afirmemos que aceptamos la hipótesis nula, en realidad lo que queremos decir es que no hay suficiente evidencia estadística para rechazarla. El empleo del término aceptar, en lugar de rechazar, se ha vuelto de uso común. Significa simplemente que cuando los datos de la muestra n hacen que rechacemos una hipótesis nula, nos comportamos como si fuera cierta.
Selección del nivel de significancia.
Nuestra elección del estándar mínimo para una probabilidad aceptable, o el nivel de significancia, es también el riesgo que asumimos al rechazar una hipótesis nula cuando es cierta. Mientras más alto sea el nivel de significancia que utilizamos para probar una hipótesis, mayor será la probabilidad de rechazar una hipótesis nula cuando es cierta.

2 comentarios: